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SafeSlinger: An Easy-to-use and Secure Approach for
Human Trust Establishment

Michael Farb Manish Burman Gurtej Singh Chandok Jon McCune Adrian Perrig
CyLab, Carnegie Mellon University

ABSTRACT
Users regularly experience a crisis of confidence on the In-
ternet. Is that email or instant message truly originating from
the claimed individual? Such doubts are commonly resolved
through a leap of faith, expressing the desperation of users.

To establish a secure basis for Internet communication, we
propose SafeSlinger, a system leveraging the proliferation of
smartphones to enable people to securely and privately ex-
change their public keys. Through the exchanged authentic
public key, SafeSlinger establishes a secure channel offer-
ing secrecy and authenticity, which we use to support secure
messaging and file exchange. Essentially, we support an ab-
straction to safely “sling” information from one device to
another.1 SafeSlinger also provides an API for importing ap-
plications’ public keys into a user’s contact information.By
slinging entire contact entries to others, we support secure
introductions, as the contact entry includes the SafeSlinger
public keys as well as other public keys that were imported.
As a result, SafeSlinger provides an easy-to-use and under-
stand approach for trust establishment among people.

1. INTRODUCTION
For many current Internet applications, users experience a

crisis of confidence. Is the email or instant message we re-
ceived from the claimed individual or was it sent by a spam-
mer?

Cryptography alone cannot address this problem. We have
many useful protocols such as SSL or PGP for entities that
already share authentic key material, but the root of the prob-
lem still remains: how do we obtain the authentic public key
from the intended resource or individual? The global certifi-
cation process for SSL is not without drawbacks and weak-
nesses [27,34], and the usability challenges of decentralized
mechanisms such as PGP are well-known [42].

The problem of human-oriented, trust establishment is fun-
damental; no amount of automation and “fail-safe” defaults
can avoid the need for basic trust decisions to be made by hu-
mans (system administrators and ordinary users alike), since
they ultimately assume the risks of digital communication,
accessing remote sites, allowing remote access to their local
resources, and employing other users’ services.

1We thank Moxie Marlinspike for suggesting the “sling” metaphor.

Of course ordinary users can extensively rely on system
administrators’ help in making trust decisions. However,
ordinary users inevitably face challenging decisions alone;
most users at home, on travel, on vacation, or in small busi-
nesses do not benefit from skilled help. All this while the
need and temptation to use new online services steadily in-
creases.

The human-centric foundation of trust establishment makes
this problem universally important; protocols and interfaces
need to be designed for a diverse population of varying skills,
interests, ages, and cultures. We postulate that usabilityis
currently the major barrier for widespread adoption of cryp-
tography. We observe a lack of well-designed security inter-
faces for current information and communication services.
In addition to usability concerns, many systems do not pro-
vide the security that they advertise. Observing the lack of
usable public key cryptography systems, Tim Berners-Lee
has called upon security researchers and professionals to de-
sign a public key encryption system for the people [11].

The recent proliferation of smartphones offers a promis-
ing opportunity to address these challenges. Current smart-
phones are highly sophisticated, offering a general comput-
ing environment with a powerful processor, high-resolution
display, several communication modalities (Bluetooth, WiFi,
4G), camera, and sensors.

Unfortunately, smartphone platforms suffer from many risks.
Vulnerabilities exist in communication standards that enable
eavesdropping or impersonation [31, 41]. Moreover, phone
operators are disclosing information or introduce vulnerabil-
ities through insecure or misconfigured systems [33].

We observe that individuals often have physical interac-
tions with resources or other individuals before communi-
cating digitally. Often, people communicate over the Inter-
net or via SMS after having met in person. We propose to
leverage the initial physical encounter to bootstrap trust, in
essence converting physical trust into digital trust. We argue
that this is a model that people can intuitively relate to.

Certainly, many people communicate over the Internet be-
fore physically meeting. To set up trust for these interac-
tions, we propose a secure introduction mechanism for trust
establishment that is rooted in physical encounters with a
common acquaintance. For example, if users could verify
that the virtual person on a Facebook invitation page has
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physically met with one of their close friends, they can gain
more trust that the invitation page was indeed issued by the
correct individual.

In this paper, we describe SafeSlinger, a system for se-
cure exchange of authentic information between two smart-
phones. In essence, SafeSlinger exchanges contact infor-
mation, containing public keys in addition to standard con-
tact list information such as name, picture, phone numbers,
email addresses, etc. Thanks to the association between the
individual holding the phone and the public key that is ex-
changed, users (with the help of the SafeSlinger App) can
later associate digital communication with the previouslymet
individual by verifying a digital signature. To make Safe-
Slinger usable, the cryptographic aspects are mostly hidden
from the user. Achieving these goals while retaining the de-
sired security properties is far more challenging than it ini-
tially sounds (Section 4 lists challenges). We have built-in
several approaches to make SafeSlinger tolerant to user er-
ror, as we describe in this paper.

We envision SafeSlinger as a general approach to boot-
strap secure digital communication. (1) First, we enable
small groups (2–10 individuals) of physically co-located users
to securely bootstrap trust byslinging keysbetween their de-
vices (a one-time operation). SafeSlinger can also support
remote setup, as long as users can authenticate the other in-
dividual (e.g., via live video conference or voice communi-
cation). (2) Second, we built-in secure phone-to-phone mes-
saging and file transfer, both providing secrecy and authen-
ticity. The user experience is nearly identical to that of tradi-
tional SMS and MMS messaging today. (3) Third, SafeSlin-
ger enablessecure introductionswithout physical meetings
by allowing a common acquaintance to facilitate a mutual
introduction enabled by SafeSlinger file transfer. (4) Fourth,
we enable other applications to use the SafeSlinger API to
add their public key to a contact entry. Now, when a user
slings its updated contact list entry to another user, the appli-
cations’ public key is automatically included, and the same
application at the other end can extract the public key. This
mechanism can enable applications such as secure email or
secure SMS to solve the problem of securely exchanging the
public key without a leap of faith.

This paper makes the followingcontributions. SafeSlin-
ger is the first complete system that provides secure group
credential exchange that is also privacy-preserving, suchthat
no external party can learn any of the exchanged informa-
tion. SafeSlinger is also the first group credential exchange
system that can be used remotely over a telephone or video
conferencing line. SafeSlinger is designed to be easy-to-use
and defend against all attacks we are aware of. We have im-
plemented SafeSlinger on Android and iOS, and have made
it freely available. SafeSlinger includes mechanisms for se-
cure messaging and file exchange, as well as secure intro-
duction between two individuals.

2. PROBLEM DEFINITION, GOALS, ASSUMP-
TIONS AND ADVERSARY MODEL

In this section, we define the problem we set out to solve,
discuss our goals, present assumptions that need to hold, and
the adversary that we defend against.

2.1 Problem Definition
The basic bootstrapping primitive that we want to accom-

plish is to securely exchange information that is associated
with the intended individuals participating in an exchange.
The security properties that we seek are information secrecy
(only the intended entities receive the information), and user-
verifiable trustworthy association of data to an honest indi-
vidual (user knows exactly the information that is associated
with a specific honest individual).

Note that there are fundamental limits on the ability of an
electronic protocol to protect one human against another hu-
man with the intent to deceive, hence the adjective “honest”.
There are some subtleties involved when the exchange in-
cludes more than two people. For example, if Fred, George,
and Harry perform an exchange, and Harryis adversarial,
we still wish for the information exchanged between Fred
and George to have all of its security properties intact. Intu-
itively, we wish for the group exchange to produce the exact
same security properties that would result from exhaustive
pairwise exchanges between all members of the group.

Given such a secure exchange that includes a public key,
all subsequent mechanisms for authentic, integrity-protected,
and optionally secret communication can be implemented
using well-known protocols, relying on the authentic bind-
ing of the public key to the correct individual.

2.2 Goals
Our core goal is to enable usability while retaining the se-

curity properties described in the problem definition. The
lack of usability is likely to have been a core detriment to
the limited adoption of PGP [42]. Therefore, we want to
make SafeSlinger as easy as possible to use. Unfortunately,
many cases present a tradeoff between security and usability;
for example, requiring users to validate the equality of hash
values during protocol execution is a tedious operation and
users inevitably select “equal” without performing the com-
parison. In such cases, we need to make the system slightly
less usable and demand more from the user to retain a high
level of security.

Another goal is to support heterogeneous platforms, thus
enabling interactions among smartphones of several manu-
facturers and running different operating systems. This turns
out to be a major challenge, since even simple Bluetooth
communication is not feasible across phones from different
vendors, as an Apple iPhone, for example, only wishes to
communicate via Bluetooth with another Apple product or
a headset. We discuss these aspects in more detail in our
implementation section.

Moreover, we want to support several users to simulta-
neously exchange their contact list information. Without
this requirement, it would be tedious for a group of users
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to exchange their information viaN · (N−1)/2 pairwise ex-
changes.

2.3 Assumptions
Our protocols do need to assume certain user behaviors

to execute successfully. First, we assume that users are com-
puter literate and can follow basic instructions, such as “com-
pare the words2 presented on your screen with the words pre-
sented on other phones and select the ones that are equal”.
We also assume that users have a natural desire for security
and that they do not want to deliberately disclose their pri-
vate information. We also assume that users can authenticate
(in the human sense, e.g., recognizing the other users’ ap-
pearance, voice, etc.) the individuals that they perform infor-
mation exchanges with, such that an adversary who imper-
sonates another individual would be detected through per-
sonal identification.

We also assume that the smartphone hardware and soft-
ware is free of vulnerabilities and malware, as securing these
is out of scope for this work.

2.4 Adversary Model
We assume that some of the legitimate users that partic-

ipate in the protocol may be malicious. (We call the other
users honest.) We consider a Dolev-Yao style adversary that
has complete control over all network messages. Further-
more, any Internet server we may use during protocol oper-
ations may be malicious. We also assume that adversaries
may be physically present in the space where information
exchanges happen.

We consider an adversary who wants to break the prop-
erties as described in the problem definition, i.e., violate
secrecy and authenticity properties of the information ex-
change and subsequent communication. We consider denial-
of-service attacks to be out of scope, as users can easily de-
tect the lack of progress of the protocol and re-start it as
needed.

3. CRYPTOGRAPHIC BACKGROUND
We provide background on the cryptographic mechanisms

used in this paper: multi-value commitments and group Diffie-
Hellman key agreement.

3.1 Multi-Value Commitments
A cryptographic commitment protocol is used to lock an

entity to a valueV without disclosingV. Based on the com-
mitment value, the decommitment can be validated and the
protocol ensures that the correct valueV is disclosed. A
commitment protocol for valueV can proceed as follows:
C = H(V,R), whereC is the commitment value,H is a cryp-
tographic hash function that is one-way and collision-free,
andR is a random unpredictable nonce. Thanks to the prop-
erties of the hash function and the randomness ofR, V can-
not be inferred from the commitmentC. To open the com-

2Presented in the participants’ common language, e.g., English.

mitment,V and R are disclosed. The collision resistance
property ofH ensures that it is computationally infeasible to
find anotherV or R that will result in the same commitment
C. Note that ifV is unpredictable (e.g., a freshly generated
ephemeral public key), the additional nonce valueR is not
needed and we simply haveC = H(V).

C

HV1 HV2

V1 V2

Figure 1: Multi-value commitment structure for authen-
ticating and disclosing eitherV1 or V2.

In case we want to commit to either valueV1 orV2 (decid-
ing which to actually release at a future time) with a single
commitment, we can employ a tree-like structure (Figure 1).
HV1 = H(V1), HV2 = H(V2), andC= H(HV1 ||HV2), where
|| indicates the concatenation operator. This structure en-
ables decommitment of eitherV1 or V2 without disclosing
the other. For example, to decommitV1, we discloseV1 and
HV2, and the case forV2 is analogous. Note that this ex-
ample is for the case whenV1 andV2 are unpredictable to
the adversary; additional use of nonces is required for well-
knownV1 orV2. This type of structure is similar to one-time
signatures [29].

In our protocols, we further make use of hierarchical com-
mitments, where the decommitment value is again a commit-
ment value.

3.2 Group Diffie-Hellman Key Agreement
Group Diffie-Hellman (DH) key agreement is a general-

ization of the two-party DH key agreement [9], where multi-
ple parties participate to establish a common group key. The
Cliques protocol is an example for group DH key establish-
ment [37]. We will make use of STR [36], a tree-based group
DH protocol, which we briefly describe in this section.

(K = gz·gxy
,ggz·gxy

)

(gxy,ggxy
) (z,gz)

(x,gx) (y,gy)

Figure 2: Group DH key agreement tree for 3 members
(mod poperations omitted for clarity). The notation is
(priv, pub), where the first element in the parenthesis lists
the DH private key, and the second lists the DH public
key. The group key is the private keyK at the root.

In group DH protocols, each participant is placed at a leaf
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node of a binary tree, where each node of the tree has a
private and a public key associated with it. The value of
a leaf node is the private and public DH keys of the mem-
ber at that node. The value of the parent node is derived
through the DH operation on the values of the two child
nodes, for example if the values of the child nodes arex
for the private andgx mod p for the public key of the left
child, andy for the private andgy mod p for the public key
of the right child, the parent value isgxy mod p for the pri-
vate andggxy mod p mod p for the public value. Figure 2
illustrates a group DH key agreement with three members,
where each node in the tree lists the private and public DH
keys. The private key that corresponds to the root node is
the shared secret of all group members. In the STR [36] pro-
tocol, the tree shape is a maximally unbalanced tree (resem-
bling a comb), and the TGDH [16] protocol uses a balanced
tree. Research has shown that total protocol latencies are
lower for STR in environments where the communication
latency dominates over the computation of a modular expo-
nentiation [15], which is the case in mobile environments.

4. ATTACKS AND CHALLENGES
Secure local exchange of information is a surprisingly in-

tricate and challenging problem. Numerous attacks are pos-
sible, which we will illustrate with two simple protocols. We
then discuss the attacks in more detail.

4.1 Strawman Approaches
We consider two simple protocols for local authenticated

and secret exchange of information between users who are
physically nearby each other and who want to simultane-
ously exchange their contact list information, which also
contains their public key.

Password-based exchange.
In this protocol, a password shared among users is used

to secure the information exchange. Several researchers pro-
posed protocols of this flavor, for example Asokan and Ginz-
boorg [2], Valkonen, Asokan and Nyberg [39], and Abdalla
et al. [1].

A simplified password-based protocol proceeds as follows:
the users agree on a passwordP and enter it into their de-
vices. FromP, the devices derive a symmetric key with a
cryptographic hash functionH (i.e., K = H(P)), andK is
used to encrypt and authenticate their communication. Each
user broadcasts its information to the others as follows (where
IX represents the information of userX, and MAC represents
a secure message authentication code, and{X}K stands for
encryption of messageX with keyK):

A→∗ : 〈{IA}K , MACK({IA}K)〉
B→∗ : 〈{IB}K , MACK({IB}K)〉
C→∗ : 〈{IC}K , MACK({IC}K)〉
D→∗ : 〈{ID}K , MACK({ID}K)〉

Each user then uses their keyK to authenticate and de-
crypt the received information. Unfortunately, this approach
is vulnerable to several attacks. First, a malicious bystander

could overhear or guess the password, and control communi-
cation such that the legitimate users’ messages do not reach
the receivers, while the attacker is able to insert information
of his choosing. In the Dolev-Yao attacker model, where
the attacker controls all communication, this is a simple at-
tack. In practice, it is quite possible to mount such an attack.
Especially in the case of wireless communication, the adver-
sary can jam legitimate messages to prevent reception, and
then re-insert messages that will be received by the receivers.
Note that this weakness stems in part from the password-
based key exchange protocol’s requirement that the pass-
word be kept secret from all non-participants.

Second, a malicious participant (as opposed to a bystander)
could easily mount this attack as well, since that user will
know the password. Such a malicious user could control all
the information that each member receives. Note the distinc-
tion between a malicious user’s being able to misrepresent
his own identity (which simplifies to a problem with human
trust, and cannot be solved with a protocol to the best of
our knowledge), and that user’s being able to insert fraud-
ulent information for honest protocol participants (whichis
a protocol weakness). This represents the protocol placing
excessive trust in a single participant.

Both attacks are instances of Man-in-the-Middle (MitM)
attacks, which are a common form of protocol attacks.

Group Diffie-Hellman with Key Comparison.
A promising approach to eliminate the requirement that

human protocol participants communicate amongst them-
selves secretly is to leverage a group Diffie-Hellman (DH)
key establishment protocol (Section 3.2). MitM attacks can
be prevented by human verification of equality of the estab-
lished key among the participants. A sample comparison-
based protocol is by Valkonen, Asokan and Nyberg [39].

The idea in comparison-based DH key establishment is to
detect MitM attacks by having the users visually compare a
hash of the shared secret that results at the end of the DH
protocol. To understand this defense, consider the following
exchange between two usersX andY. X has the private DH
key x, andY has private keyy. Following a successful key
agreement, they would share the keyKxy = gxy mod p. If
the users compare a few bits ofH(Kxy), whereH is a cryp-
tographic hash function, they try to ensure that they have the
same key. SinceH is a one-way function, this comparison
does not reveal the secret key. A variety of approaches exist
to compare these keys, ranging from hexadecimal represen-
tations of the hash to hash functions with pictures as output
to simplify comparison [14]. If the comparison suggests that
the keys are equal, the users inform the application to pro-
ceed.

In case of a MitM attack, where an adversaryM imper-
sonatesX to Y andY to X, M would have sentgm1 mod p
to X andgm2 mod p to Y. Consequently,X computes the
secret keygx·m1 mod p andY computesgy·m2 mod p. Since
the two keys are different, the hash values will also be dif-
ferent betweenX’s andY’s device with high probability and
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the attack would be detected.
Unfortunately, numerous attacks are possible. First, most

users prefer convenience over security, and they may sim-
ply select “OK, hash is equal” without performing the actual
comparison. Since no attack occurs most of the time, the
users would also lose interest to perform such a comparison.
Another issue is the entropy of the values that are compared:
to make this comparison more usable, only a subset of the
full 160-bit hash of a SHA-1 hash function would be pre-
sented to the user, as the full-length comparison is too time
intensive. Consequently, users may only compare about 20
bits, with the idea that an attack would be caught with proba-
bility of 1−1/220, which means that only about one in a mil-
lion attacks would go unnoticed and be successful (assum-
ing users indeed perform the comparison). Unfortunately,
another attack is possible on comparisons with limited en-
tropy. The MitM adversary can computem1 andm2 such
that [H(gx·m1 mod p)]20 = [H(gy·m2 mod p)]20, where[.]20

indicates truncation down to the least significant 20 bits. Be-
cause the attacker controls both sides of the equation, find-
ing a collision can exploit the birthday paradox and the ex-
pected number of operations to find the collision isO(210),
requiring only around 1000 cryptographic operations, which
is trivial to accomplish on current hardware (e.g., by out-
sourcing computations to a cloud).

Yet another attack on this protocol for groups of three or
more participants is that a bystander could participate in the
protocol – the invisible nature of electronic communication
prevents humans from observing which devices are actually
communicating. Consequently, the adversary could learn
the shared secret, and of course all hash comparisons will
be successful, as all members share the same group secret
key! The problem is that the additional member is difficult
to detect. A simple countermeasure against this attack is
to require members to count and verify the number of le-
gitimate group members. Unfortunately, as prior research
shows, counting is unreliable when the number of group
members is larger than 8, as people tend to make mistakes
causing the protocol to fail [8]. Moreover, another attack is
possible even if members could count correctly: the Group-
in-the-Middle (GitM) attack [17].

In a GitM attack, a group member participating in the pro-
tocol is malicious and exploits the invisibility of wireless
communication to split the group into several subgroups,
adding additional virtual users to create the illusion to each
member that they are in a group with the correct number of
users. For instance, consider a group with 4 membersA,B,C
andD, who attempt to run the protocol. Consider thatD is
malicious, so he could create virtual identitiesX,Y, andZ,
and since he controls the wireless signals and their reception
through careful jamming and directional antennas, he can
create the illusion of two groups:A,B,X,D, andY,Z,C,D.
Note that the legitimate membersA,B, andC cannot detect
this attack, since they believe that they are performing the
protocol in a group with 4 users. Similar to the 2-party
MitM collision attack discussed above,D can select the pri-

vate keys forX,Y,Z, andD such that the two subgroups will
end up with the same hash to compare, preventing the mem-
bersA,B,C from detecting the attack even if they diligently
check all the hashes.

We hope that these two strawman protocols demonstrate
that designing a usable and secure information exchange pro-
tocol is a surprisingly intricate challenge. Next, we give a
more thorough list of attacks and challenges.

4.2 List of Attacks and Challenges
We consider the following attacks:
• Malicious bystander who participates in protocol:

a bystander can overhear conversation, and attack the
protocol by controlling the local wireless communi-
cation (Dolev-Yao attacker model). TheMan-in-the-
Middle (MitM) attack is a specific instance of this
attack.
• Malicious group member: an invited member of the

group wants to violate protocol properties, such as mount-
ing animpersonation attackby injecting incorrect in-
formation for another user, or performing aSybil at-
tack [10] by injecting multiple entries either for ficti-
tious individuals or for individuals who are not present.
A malicious group member can also perform aGroup-
in-the-Middle (GitM) attack [17], as described above.
• Malicious server: for protocols that rely on a back-

end server, the server may be controlled by a malicious
administrator or be compromised and thus execute ma-
licious code.
• Information leakage after protocol abort: an adver-

sary may be able to cause a protocol abort and trigger
information leakage of private information about a par-
ticipant.
• Collision attack on low-entropy hash: as described

above, low-entropy hash values can be vulnerable to
efficient birthday attacks if the correct precautions are
not taken.

We consider the following challenges:
• Exclusion of unintended participants: legitimate users

will expel an unwanted bystander who wants to partic-
ipate in the protocol.
• Correct member count: users need to correctly count

number of group members.
• Identity validation: users correctly validate the iden-

tity of information received from the exchange. More
specifically, they map the identity information to the
people who are physically present, and they would re-
ject information about a person who is not physically
present.
• Impersonation detection: users verify that no other

user has injected information that impersonates them
in the current exchange. For example, a malicious user
may also inject information about Alice, even though
Alice is also participating in the exchange. The risk is
that another user may discard the correct information
and accept the wrong information.
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• Diligent hash comparison: users correctly perform
the hash comparison, even after executing the protocol
numerous times without any attack.
• Diligent error checking and aborting: users will abort

the protocol and restart the protocol when suspicious or
error conditions are encountered.

In the next section, we describe our approach for design-
ing SafeSlinger to prevent all attacks and overcome the chal-
lenges listed.

5. SAFESLINGER
In this section, we provide a detailed description of the

SafeSlinger protocol. We first provide a high-level overview
before we dive into the details.

5.1 Overview
The main purpose of SafeSlinger is to enable a set of users

to exchange their contact information such that every non-
malicious user receives the correct information about every
other non-malicious user. Malicious users may collude and
impersonate each other, for example, therefore we cannot
provide any guarantees for those parties. Our main goal is
provide high usability while preventing the attacks we de-
scribe in Section 4.

The first hurdle we need to overcome is to enable commu-
nication among the users’ mobile devices. To capture most
of the market share of current smartphones, we target An-
droid, iPhone, and Windows Mobile devices. Unfortunately,
these platforms do not offer native support for 802.11 ad-
hoc mode or setup of a base station to enable other devices
to connect to them. Bluetooth communication is also chal-
lenging because of the slow discovery phase and the unwill-
ingness of iPhones to communicate to a non-Apple device
except a headset. NFC is not yet widely deployed, and such
communication does not scale to multiple devices. As a
consequence, we use Internet-based communication, where
all the mobile devices connect to a cloud server. This ap-
proach has the additional advantage that no device discov-
ery is needed, as the devices can simply send packets to the
server via IP.

We support groups of up to 50 users, however, we use two
different protocols: the main SafeSlinger protocol which we
describe in this paper for up to 7 users, and the Ho-Po Key
protocol for groups of more than 7 users [30]. As prior work
shows, users can reliably count the number of participants
for groups of up to 8 users, but several people start to make
errors for larger groups [8]. As the protocol fails if only a
single person miscounts, we conservatively set the threshold
at 7 users, up to which users can reliably count. Asking users
to count the number of participants rules out several attacks,
as we discuss in our Section 5.4.

After the mobile devices connect to the server, the server
cannot know which devices belong to the same group. It is
a challenging problem for the server to determine the group-
ing, especially if several concurrent exchanges are ongoing.
Several approaches exist, which we discuss in Section 5.5.

We propose the following approach, which does not leak any
sensitive information to our untrusted server. The server as-
signs a unique ID to each mobile device, which it displays
to its user. The devices ask the users to find and enter the
lowest ID. The devices then send that ID back to the server,
which can thus perform the grouping. Note that the actual
grouping is not security sensitive, as an intruder will result
in denial of service.

In a nutshell, the mobile devices send their information
to the server, which redistributes it to the other devices. The
users engage in a verification of all exchanged information to
ensure that they all have received identical information from
the server. This verification is done by the users who perform
a comparison of short hash values displayed by the phones.
Two problems that we discussed in Section 4 occur: (1) users
simply click “OK” without performing the comparison, and
(2) an attacker can compute a collision attack on the short
hash value. We solve (1) by presenting 2 decoy hash values
besides the correct value and asking users to verify which of
the 3 hash values matches a value on other people’s devices.
This forces the user to perform the comparison, as a random
guess will cause the protocol to fail 2/3 of the time. More-
over, this approach encourages users to select “no match” if
they cannot find a match. We address problem (2) by us-
ing Short Authentication Strings (SAS) [6, 18, 19, 40, 43].
In SAS, all devices first commit to the values that are used
in the hash comparison. Once all the commitments are dis-
tributed, the devices reveal the decommitments and the short
hash comparison can proceed. This approach prevents the
collision attack and in Zimmermann’s words [43] converts
the attack from a “safe attack” into a “daring attack.” The
collision attack is a safe attack, because the adversary knows
that the attack will succeed with probability 1 as the colli-
sion has been found. However, with the commitment, the
adversary cannot know ahead of time if the collision indeed
will occur, and the attack only succeeds with a probability
of 2−n, wheren denotes the bit length of the authentication
string, thus resulting in a “daring attack.”

A major challenge which we address in SafeSlinger is to
prevent the server from learning any contact information.
We accomplish this by leveraging a group DH protocol, which
is described in Section 3.2. The group DH protocol estab-
lishes a shared secret key among all participants, which is
used to encrypt the contact information. To prevent MitM
attacks, the DH public key is included in the initial commit-
ment, which the users validate through the hash comparison,
authenticity providing of the DH public keys.

5.2 SafeSlinger Details
Figure 3 describes the SafeSlinger protocol in detail. In

Step 1 (which we will abbreviate as S1 for short), the user
selects which data to share and enters the total number of
protocol participants. In S2, the device computes the val-
ues needed for the group DH protocol by selecting theℓ′-bit
long DH private keyni at random (in the current version, we
useℓ′ = 512). The device also randomly selects nonces to
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indicate “match” (Nonce matchNmi) and “wrong” (Nonce
wrongNwi). The device also encrypts the data to share with
the Nonce match used as a symmetric encryption key (we
use the AES block cipher with 128-bit keys). In the current
version, the security parameterℓ = 128, and we use SHA-1
truncated to 128 bits as hash functionH. Figure 4 depicts
this multi-value commitment structure for userUi . Finally,
in S3 the device sends the commitmentCi to the server.

In the next phase, the server groups the users. First, the
server sends a unique ID to the device (S4) which the device
displays and prompts the user to find the lowest ID amongst
all devices (S5). In S6, the user enters the lowest ID which
in S7 the device sends to the server.

The server now knows which devices belong to the same
group, and distributes ID and commitment pairs(ID i ,Ci) to
all group members (S8). Once a device receives all com-
mitments, in S9 it opens up the first level decommitment
HNi ,Gi ,Ei (Figure 4 illustrates this). If validation of all de-
commitments is correct (S10), devices compute a hash over
all decommitments ofCi , i.e., over the triplets(HN∗,G∗,E∗),
sorted by the value of the uniqueID i assigned to each device
to ensure that all devices compute the hash over the same
triplet ordering. Each device then computes a word phrase
that represents the hash (S11) – we use the PGP word phrase
which results in a representation that encodes 24 bits of the
hash. The device also produces two decoy word phrases,
which produces two interesting challenges: (1) if the words
in the decoy word phrase match words in the actual word
phrase, users may get confused, and (2) if words in differ-
ent users’ decoy word phrase match, users may select the
wrong decoy phrase on their respective devices as a match.
To avoid this, we make sure that the decoy phrases do not
include any words from the actual word phrase, and we also
make sure that all decoy word phrases are mutually exclu-
sive among all devices, which is a challenge to implement.
We address this by using the received commitments as a seed
to a pseudo-random generator, and having each device draw
words from the word phrase for their decoy phrases with-
out replacement. Since the word phrase only contains 512
words in total, this limits the total number of users we can
support. More intricate details on the word phrase selection
are presented in Section 6.

If no phrase matches, the user selects “no match” and
sends the “wrong” nonceNwi along withHm′i to enable ver-
ification to the server (S12). This case is also triggered if the
user selects the wrong word phrase. This approach cryp-
tographically authenticates the “no match” message from
the commitmentCi and thus prevents injection of the wrong
nonce by an adversary. In S13, users correctly selected the
matching word phrase, and the device reveals the pair of
values indicating success(Hmi ,Hwi), which the server re-
distributes in S14. Each device can verify that all the users
selected the correct word phrase (S15) and in S16 the de-
vices proceed to construct the group DH tree as described in
Section 3.2. The ordering in the tree is determined by the
sorted order of the unique IDsID i . Since the STR group
DH protocol we use is intricate we omit the details for en-

hanced readability, but we refer readers to the descriptionin
Section 3.2 and for more details to papers on STR [15,36].

Data Selection & Counting

1. Ui
UI
−→Mi : Di (the data to be exchanged)

Ui
UI
−→Mi : Ñi (number of people in the group)

Commitment, Group DH Key Setup

2. Mi : Nmi
R
←−{0,1}ℓ (“match” nonce)

Hmi = H(Nmi), Hm′i = H(Hmi)

Nwi
R
←−{0,1}ℓ, Hwi = H(Nwi) (“wrong” nonce)

HNi = H(Hm′i ||Hwi) (multi-value commitment)

ni
R
←−{0,1}ℓ

′
, Gi = gni mod p (group DH key)

Ei = {Di}Nmi (encryption of data)
Ci = H(HNi || Gi || Ei) (commitment)

3. Mi → S : Ci , Ñi
Server Unique ID Assignment, User Grouping
4. S→Mi : ID i (unique ID per user)
5. Ui : find lowest unique ID→ IDL

6. Ui
UI
−→Mi : IDL (enter lowest ID)

7. Mi → S : IDL
Collection and Distribution of Initial Decommitment
8. S→Mi : ID j ,Cj ( j 6= i) (other users’ ID and commitment)
9. Mi → S : HNi ,Gi ,Ei

S→Mi : HNj ,G j ,E j ( j 6= i) (other users’ decommitment)

10.Mi : Cj
?
=H(HNj ||G j ||E j ) ( j 6= i) (verify)

Wordlist-based Comparison of Integrity of Commitments
11.Mi : WordPhrase([H({(HN∗,G∗,E∗)})]24) (screen)

Ui
UI
−→Mi : Select Matching Word Phrase

12.Mi → S : Hm′i ,Nwi , if “no match” or wrong phrase selected
Abort protocol.

13.Mi → S : Hmi ,Hwi , if “match” & correct phrase selected
14.S→Mi : Hmj ,Hw j ( j 6= i)

15.Mi : HNj
?
=H(H(Hmj )||Hw j ) ( j 6= i) (verify)

Abort if any verification failed
Group DH Key Establishment
16.Mi : Computation of group DH tree (Section 3.2)

K = Private key of root node (see Section 3.2)
Distribution and Verification of Data Decryption Key
17.Mi → S : {Nmi}K

S→Mi : {Nmj}K ( j 6= i)
18.Mi : Decryption ofNmj ( j 6= i)

Hmj
?
=H(Nmj ) ( j 6= i) (verify)

Decryption of Data and User Acquisition
19.Mi : Decryption ofE j with Nmj ( j 6= i)→ D j

Save user dataD j

Figure 3: Steps for userUi (i ∈ 1. . .N) to exchange data
Di with the other N− 1 users via their mobile devices.
Ui

UI
−→Mi indicates input by userUi into mobile deviceMi .

Mi → S represents wireless communication from mobile
deviceMi to server S. {X}K represents encryption ofX
with symmetric key K.

Once the secret group keyK is established, the devices
then proceed to send their final match nonceNmi (which
also serves as the decryption key) to the group, encrypted
with K (S17). In S18, each device decrypts and verifies the
correctness ofNmi , and finally usesNmi to decrypt the data
Di in S19.

5.3 User Experience
Although the protocol appears quite complex to achieve

all the security properties we set out for, the user experience
is actually quite simple as SafeSlinger performs all the cryp-
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Ci

HNi Gi = Gni mod p {Di}Nmi

Hm′i Hwi

Hmi Nwi

Nmi

Figure 4: Multi-value commitment structure for user Ui .
Ci , HNi , Hm′i , Hwi , Hmi , Nwi , Nmi , are 160-bit values;Gi

is 512 bits, andDi varies in length.

tographic operations and checks without the users’ involve-
ment. The user experiences the following steps: (1) select
the data items to be shared, (2) count and select the number
of users, (3) find and enter the lowest ID displayed by the de-
vices, (4) compare the word phrases and select the one that
matches and click “match”, or click on “no match”, (5) se-
lect which users’ data to import into ones contact list. We
optimized the implementation such that a complete run only
requires on the order of 10 seconds.

5.4 Security Analysis
We will use the list of attacks and challenges from Sec-

tion 4.2 to guide this security analysis, however, we con-
sider additional attacks that are specific to the operationsof
the SafeSlinger protocol. We consider attacks on the Safe-
Slinger protocol for groups of fewer than 8 members that we
describe in this paper, for the security analysis of the proto-
col with more than 8 members we refer to the Ho-Po Key
paper [30].

We first consider attacks by malicious outsiders (who are
not legitimate group members). Such adversaries can con-
tact the server, ask for a unique ID, and attempt to join ar-
bitrary groups by sending the server a plausible group ID to
join. Since users specify the group size, this attack will be
detected as the server will send too many commitments to
the participants.

A more sophisticated version of that attack is where a lo-
cal adversary jams communication of one of the local de-
vices, and attempt to join the group that way. In that case, the
local user who is being suppressed by the adversary needs to
inform the other group members to abort the protocol, since
she is not receiving commitments. If the user is receiving
other users’ commitments, then the hash comparison will
fail with high probability (1− 224) and at least one other
user who is part of the group needs to be informed not to
press “match”. Preventing this attack requires some amount
of user diligence, essentially the suppressed user has to in-
form at least one honest group member to select “no match”

in the word phrase comparison. Thus, the users need to en-
sure that they perform the hash comparison withall other
users, fortunately, as long as at least one user who was not
suppressed is diligent, then these attacks will be detected.

A malicious legitimate participant of the group could at-
tempt several attacks. First, attempts to infiltrate additional
virtual members into the group, for example through a Sybil [10]
attack, would fail because the number of virtual members
would be larger than the count of physical members which
users enter at the beginning of the protocol. A Group-in-
the-Middle (GitM) attack as described in Section 4 is pre-
vented if users diligently perform the hash comparison step,
as members who end up in different groups will have differ-
ent hashes to compare with high probability. The adversary
could also send wrong contact information for himself, for
example attempting to impersonate another person who is
currently in the group. SafeSlinger defends against this at-
tack by enabling users to verify at the end of the protocol
which contact phrase entries they import into their address
book, and if a suspicious entry exists the user can attribute
that to the adversary. If the adversary impersonates a user
who is present, that user can detect that someone else in-
jected an entry for herself and inform the others.

A malicious server could try to split the group up into dif-
ferent subsets of users, and fake another set of users (GitM)
to ensure that each user encounters the correct number of
users, even though some are virtual users created by the
server. Again, diligent checking of the hash with all other
members in the group will detect this attack. The server also
does not learn any information about the users, as it cannot
participate in the group DH protocol to discover the estab-
lished group keyK. The only way to obtainK is to par-
ticipate as a user and inject a commitment, which would be
detected by the device as the number of members is larger
than the user entered.

The multi-commitment with several stages of decommit-
ment (as depicted in Figure 4), ensures that no informa-
tion is revealed unless all membersMi reveal their “match”
nonce’s hashHNmi because the devices would not reveal
the decryption keyNmi . Hence, if any group member de-
tects an anomaly before the hash comparison, all devices
will abort the protocol. The multi-commitment also pre-
vents the collision attack on the low-entropy hash that is
used for the comparison, by computing the hash over the
ordered triplets(HN∗,G∗,E∗). Since the commitmentCi =
H(HNi || Gi || Ei) locks in the value of the triplet, an ad-
versary cannot change its triplet or predict any other triplet
before the hash is pre-determined through all users’ choices.
Hence, the attacker only has a chance of 1 in 224 to create a
collision, which is sufficiently small for our purpose.

5.5 Discussion
In this section, we discuss the rationale behind design de-

cisions we made.
With respect to the server’s grouping approach, we con-

sidered numerous alternatives. The BUMP application [5]
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performs the grouping by having two users “bump” their
phones together, and by measuring location, time, and accel-
eration the server can pair up the two phones. Although this
approach is fun for the users, we did not use if for numerous
reasons: (1) BUMP reveals the user location to the server,
which is an invasion of privacy, (2) the approach is not se-
cure as a malicious bystander can simultaneously simulate
the bump and often be paired with one of the two devices and
steal the user’s contact information [38], (3) does not scale
to more than 2 users, (4) cannot be performed remotely over
the telephone, (5) acquiring the location can be unreliable
and often has a delay of 10 seconds or more, (6) the protocol
is often unreliable and the server cannot pair the devices.

Another alternative for grouping we considered is to use
ambient noise, but this may also reveal privacy-sensitive sound
to the server, and may also be unreliable in many circum-
stances. We finally settled on the uniqueID assignment by
the server and having users find and enter the lowestID,
which is fast and reliable, and can be fun as users compete
to see who is “the winner”. Based on theIDs, all the server
needs is to end up with a connected graph, where each de-
vice represents a node and an edge is formed by having one
device send theID of another device to the server. We con-
sidered the approach of having users simply enter anID of
any other user, but this may be confusing in case multiple
users are present, it can also lead to a non-connected graph
in case there are more than 3 users. By having users enter the
lowestID, the resulting graph forms a star topology, which
is connected.

A point of frequent confusion is that people believe that
the members who perform the exchange are the only group
that can communicate. This is not the case, however. The
SafeSlinger exchange protocol is only used for acquiring
other users’ information in a secure fashion. Since the con-
tact information includes a public key, only that public keyis
used to establish subsequent secure communication. In par-
ticular, all cryptographic values created during the exchange
(as phraseed in Figure 3 are erased right after the exchange –
the sole purpose of their brief existence was to protect a sin-
gle exchange. Subsequent secure group communication can
be easily established by using the exchanged public keys in
conjunction with a group DH protocol, in which case it does
not matter whether the public keys of other group members
were acquired in the same or in several separate exchange
sessions. Thus, there is no relationship of the group that was
used to exchange the information and subsequent member-
ship composition of secure group communication.

6. IMPLEMENTATION
The implementation of SafeSlinger runs on a central server

and multiple smartphone platforms. The client application
is written for Android 2.1 in Java and Apple iOS 3.0 in
Objective-C. The server application is written for the Google
App Engine platform in Python. We tested our key exchange
over cellular and Wi-Fi networks and on several smartphone
devices: Motorola Droid 855, Google Nexus S, Samsung

Galaxy, Samsung Galaxy SII, Apple iPod Touch, and Apple
iPhone 4.

In this section we provide an overview of design decisions
intended to optimize the adoptability and usability of our key
exchange and a detailed walk-through of the steps in a key
exchange protocol execution. Usability aspects drove many
of our design considerations to make the experience conve-
nient, efficient, and comfortable to use.

Figure 5 depicts the steps for a contact list exchange. In
5(a) we can see how a user can select the entries of the con-
tact list to share. 5(b) shows the dialog where the number
of users are selected, the next entry on the bottom that is not
visible selects “8 or more users”, which would trigger the
Ho-Po Key protocol. In 5(c), the user sees her unique ID
assigned by the server and enters the lowest ID of any user
in the group. The word phrase selection screen is shown in
5(d), and if all operations were successful, in 5(e) the user
can select which contact list entries to import into which of
their address book accounts.

6.1 Address Book Key Management
As our implementation attempts to share contact data and

keys with others, we rely heavily on use of the mobile op-
erating systems’ contact list. At the beginning of our ex-
change, each user must identify which contact entry they
wish to use as their identity, or create one. Since we want
to provide a place to store public key data for the user, it
would be beneficial to keep it in a recognizable field that the
smartphone’s address book synchronization service would
backup for us offline. We extend the ability for the contact
list to store the name and value of a new instant messaging
(IM) provider. Some contact synchronization services may
require ASCII-only values in this IM field, so we Base-64
encode our public key under a custom label that the third-
party application defines. Further discussion of this API can
be found in Section 7.1.

6.2 vCard Construction
Before we can send our contact information we need to

format it in a standard manner so that will be recognizable
across platforms. We format our contact data in vCard 3.0,3

and the key material specifically uses the IETF vCard Ex-
tensions for Instant Messaging4 proposal. We use this IMPP
field type with a naming pattern so that keys are arbitrary
data to the key exchange which do not require special han-
dling relative to other contact fields. This will encourage
developers to adopt the exchange of key material or other
data made available by SafeSlinger without creating special
support for their application. The SafeSlinger Messaging ap-
plication (Section 7.2) uses the labels “SafeSlinger-PubKey”
and “SafeSlinger-Push” for its public key and push token
which can be seen in Figure 5(a). Although we have mod-
ified the vCard construction to share these public keys in

3http:// tools.ietf.org/html/rfc2426
4http://tools.ietf.org/html/rfc4770
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(a) Data selection (b) Number of users (c) Lowest ID (d) Word phrase compar-
ison

(e) Contact import

Figure 5: Secure contact information exchange sequence.

the IMPP field which translate to fields that can be synchro-
nized, no smartphone OS currently supports the import or
export of the existing KEY field supported in vCard 3.0.

6.3 Contact Data Confidentiality
The contact data we share in the exchange is encrypted

using AES in CBC mode with PKCS7 padding. The actual
encryption keyKD and initialization vectorIVD are derived
from the 160-bit “match” nonceNmi :
KD = [HMAC-SHA-1Nmi (1)]128,
IVD = [HMAC-SHA-1Nmi (2)]128. The[x]y notation indicates
that the valuex is truncated to they least significant bits.
Contact data integrity is achieved through verification of the
commitmentCi , hence, no additional Message Authentica-
tion Code (MAC) is needed.

As we discuss in Section 5, the “match” nonce needs to
be distributed encrypted byK (the private key of the root
node of the group DH key tree). The encryption is using
AES in CBC mode with PKCS7 padding, where the AES
key derived from the group DH keyK as follows: KCBC =
[HMAC-SHA-1K(1)]128. Since we can validateNmi based
on the committed valueHmi , no additional MAC value is
needed to ensure integrity and authenticity for that encryp-
tion.

6.4 Fast, Consistent, Wireless Communication
We chose an Internet-based communication protocol over

several other approaches. Bluetooth provides proximity and
avoids use of a server, but can be slow to discover devices,
may require barcode scans to improve discovery, and may be
difficult for all devices to play equal roles in the exchange if
one device acts as a host to the others. In addition, Blue-
tooth pairing may be restricted to certain devices depending
on how the smartphone OS implementation. Ad-hoc Wi-
Fi broadcast messages may allow each device to play an
equal role, but suffer from lack of widespread availabilityon
the most popular smartphone platforms. While proximity-
based communication protocols may assist in the grouping

process, they still cannot defend against an adversary with
a strong amplifier and a high-gain antenna who could still
participate in the protocol from a distance. Internet-level
messages (Wi-Fi, GSM, EVDO) between smartphones and
server provide an equal role for each device, and provides
fast message exchange. Moreover, Internet-based communi-
cation enables remote operation of the information exchange,
assuming the users can communicate over a channel that en-
ables them to authenticate each other, such as voice over
telephone or video conferencing (pure text over SMS or MMS
could be easily spoofed in a MitM attack).

6.5 Server Data Management
Our server, written in Python for Google App Engine,

consists of a simple database table to hold the message data
submitted by each member of the group at any given time.
The lifetime of this data is 10 minutes, since we have im-
plemented a script which removes all entries older than that
window of time.

In return for a device submitting the initial commitment
Ci , the server assigns a simple grouping IDID i , and returns
it to the user. This grouping ID is chosen by the server such
that it will be:
• Pseudo-random, to reduced predictability.
• Low-entropy, to reduce user error and effort for choos-

ing and entering the lowest number (Figure 5(c)).
These properties are achieved by querying the table for

remaining sets of available grouping IDs first in the exclusive
range 1–9, removing collisions with numbers currently in
use, and using a random function to pick and assign from
what remains. Should all 9 numbers in the lowest set be in
use, the query is repeated for the range 10–99. Similarly, if
those numbers are in use, we continue to increase the range
to 100–999 and so on.

6.6 Server Supported Messages
Our SafeSlinger information exchange protocol depends

fundamentally on the ability for each client to validate all
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data received from other members without trusting the server
or the network communication. Nevertheless, to reduce the
effect of potential network-based attacks, we set up an SSL
connection between the client and server.

The communication happens through a pull model, where
the client sends HTTPS POST calls to the server to request
transmission of as much information possible at each step.

Each client will accept information from up toN−1 other
users, whereN is the number of group members the user
selected. The server stores each piece of client information
for up to 10 minutes before an automatic cleanup routine
removes it from the server database.

Our server supports the following messages:
1. Mi sends commitmentCi , server responds with group-

ing ID ID i .
2. Mi sendsIDx of eachCx it has, server responds with

anyCx client does not yet have.
3. Mi sendsIDx of each(HNx,Gx,Ex) triplet it has, server

responds with any(HNy,Gy,Ey) triplet the client lacks.
4. Mi sendsIDx of each(Hm′x,Hwx) tuple it has, server

responds with any(Hm′y,Hwy) tuple the client still needs.
5. In groups with more than 2 users, send the public group

DH tree valueVi of an intermediate node of the group
DH tree. (Section 3.2 describes the group DH tree.)

6. In groups with more than 2 users, request the public
group DH tree valueVi of an intermediate node of the
group DH tree.

7. Mi sendsIDx of each{Nmx}K it has, server responds
with any{Nmy}K the client still needs.

6.7 Word Phrase Verification
Each user must compare their separate calculations of the

hash of all data exchanged in the protocol as a PGP word
phrase based 3-word phrase and we aim to discourage any
careless comparison of this hash.

We use the standard PGP approach for converting a 24-
bit hash value into 3 words. PGP uses two word lists, an
“even” and “odd” list with 256 words each. In SafeSlinger,
the word phrase is constructed from the first 24 bits of the
160 bit SHA-1 hash, as indicated in Step 11 of Figure 3.
Based on the standard PGP approach, the first 8 bits select a
word in the “even” list, the second 8 bits select a word in the
“odd” list, and the final 8 bits select another word from the
“even” list.

In addition to the common phrase displayed on each de-
vice, we construct 2 more decoy phrases for each device.
In this way, users are forced to compare phrases with at
least one other user and choose which phrase matches among
them. However, to prevent attacks, all users need to validate
that they all have the same word phrase. The word phrase
provided in this exchange will enable out-of-band verifica-
tion in proximity where users may view each other’s screen,
or over the phone / teleconference, where the users read their
word phrase out loud. In some contexts, it may be consid-
ered impolite in common company to look at or take a pic-
ture of another user’s phone, and thus this protocol provides

screen privacy and sharing of phrases in comfortable con-
versation. The audio sharing of the verification phrase also
allows users to perform the exchange remotely while speak-
ing on the telephone, since they will recognize each other’s
voices and can be assured of the others physical presence in
real-time remotely.

6.8 Word Phrase Collision Avoidance
If a word in our decoy word phrases is the same as in

the actual word phrase, users may get confused and select
the decoy word phrase as the match. Although unlikely, the
words in a decoy phrase may match the words in a decoy
phrase on another device, causing the user to select the decoy
phrase which results in an error detected by the local device.

We want to avoid true randomness in the decoy phrases
so that careless users will not chose the wrong phrase if the
actual hash phrase and either of the decoy phrases contain
the same word in the same position.

We thus chose our decoy phrases deterministically such
that each decoy word will be unique across all decoy phrases
displayed in the group. After computing the actual word
phrase, we mark all words as used. Using the original 160-
bit verification hash, we repeatedly hash it with SHA-1, us-
ing the bits produced as follows. We assign all decoy words
to each decoy word list by user idIDx in descending order,
producing 24 bits forIDa decoy phrase 1, thenIDa decoy
phrase 2, thenIDb decoy phrase 1, thenIDb decoy phrase 2,
until each client has produced their own 2 decoy phrases and
can display them with the actual hash phrase. During the
selection process, if a selected words is already marked as
consumed, it will be skipped and the next available word in
the list will be used. Newly selected words are also marked
as consumed. Duplicate words (i.e., the first and third words
may be the same since they are picked from the same “even”
list) within the same phrase are permitted.

This method assures that all decoy phrases contain words
that will not collide with each other or the actual word phrase
for all usersN. Since we use the words from the “even” list
twice as fast as the “odd” list, we can at most support 63
users, as((4∗64)+2) > 256.

7. APPLICATIONS
We have fully implemented the SafeSlinger Key Exchange

as an API library in Android 2.1 and as a utility applica-
tion in Apple iOS 3.0. Any third-party application for either
platform may compile into or execute the key exchange in-
cluding its GUI. Additionally, we have leveraged our key ex-
change to create a text messaging and a file exchange appli-
cation for Android 2.1. We will discuss the potential of these
applications here, and describe an application for providing
secure introduction. The Android beta version of our key
exchange and messaging implementation can be found on
the Android Market. The iOS version of our key exchange
will be available from the iTunes App Store soon (it is cur-
rently available as KeySlinger, but we will soon update it to
SafeSlinger), and the full SafeSlinger iOS application with
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full encrypted messaging and file exchange support will be
available in early 2012.

7.1 Secure Key Exchange API
The purpose of the secure key exchange API is to enable

third-party applications to leverage SafeSlinger to exchange
public keys with other users in an authenticated fashion. For
example, a secure email application can export its public key
to SafeSlinger and use it as a transport to safely sling the
key to other users. On the other user’s platform, the secure
email application will pull out the public key and use it to
authenticate received or encrypt to-be-sent email.

Our secure key exchange API may be launched from a
third-party application. Cryptographic operations are com-
puted using the operating system-provided libraries for An-
droid and iOS, with the addition of open source OpenSSL5

libraries for Apple iOS. Figure 6 shows the information flow
between multiple devices during execution of the key ex-
change, outlined as follows.

1. Third-party application generates a public/private key
pair.

2. Third-party application inserts its public key in the de-
vice’s contact list.

3. Third-party executes the SafeSlinger key exchange API
providing the location of its contact in the contact list
and name of the public key to exchange as parameters.

4. During the SafeSlinger key exchange protocol (Sec-
tion 5), multiple messages are exchanged between de-
vices via our server, and validated independently by
each device.

5. SafeSlinger key exchange saves the new public key and
contact data received in the device’s contact list.

6. Third-party applications may now make use of newly
imported public keys from the contact list.

7.2 Messaging Implementation
We have implemented SafeSlinger text messaging and file

exchange for the Android 2.1 OS and leverage the secure in-
formation exchange to share public keys that are used in turn
to encrypt text messages and file data. When SafeSlinger
first starts, it generates a RSA 2048-bit key pair. The appli-
cation then obtains a Google Android C2DM Push token6

for addressing the device. During a SafeSlinger informa-
tion exchange, the public keys and push tokens of all group
members are exchanged and imported into the address book.

The actual messages and files that are sent are encrypted
and authenticated in the OpenPGP7 message format, to pro-
vide compatibility with other PGP applications. The An-
droid implementation uses the open-source Bouncy Castle8

5http://www.openssl.org
6C2DM Push was first released for Android 2.2 OS. Unfortunately,
Android 2.1 devices can only send but not receive messages, how-
ever, they represent about 10% of current Android devices.
7http://tools.ietf.org/html/rfc4880
8http://www.bouncycastle.org
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Figure 6: SafeSlinger secure key exchange API interac-
tion.

library in Java for formatting OpenPGP messages. Our iOS
implementation uses the the open source OpenPGP:SDK9

library in C for formatting OpenPGP messages.
The sender constructs an encrypted text message using an

OpenPGP message format by encrypting the plaintext text
message with the recipient’s public key, and signed using the
sender’s private key. The sender uses the recipient’s push to-
ken as an address to send the encrypted text message to. The
recipient will decrypt the OpenPGP message using the recip-
ient’s private key and verify the OpenPGP signature using
the sender’s public key.

While OpenPGP supports many message formats, we chose
a limited set of options to ensure cross-platform compatibil-
ity in this early implementation. We used AES-256 for our
symmetric encryption algorithm and SHA-1 for our signa-
ture hash algorithm. Since OpenPGP is a well-defined and
widely used messaging standard, we did not attempt to re-
peat the efforts of those who have tested its properties in the
past. Our aim is to implement a system that makes use of our
key exchange API so that others may evaluate its benefits for
inclusion in their own systems.

Sample screenshots from our messaging application are
depicted in Figure 7. In?? we can see the login screen re-
quiring a password entry. 7(a) shows the message composi-
tion and the current selected image that is ready to be sent.
Finally, 7(c) shows the received message screen along with a
decrypted message that indicates a received file that is ready
to be downloaded and viewed.

7.2.1 Push Message Notification

We make use of push notifications on smartphone operat-

9http://openpgp.nominet.org.uk
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(a) Message composition(b) Message list with en-
crypted message

(c) Message list with de-
crypted message

Figure 7: Secure Messaging Screenshots.

ing systems to deliver message data, to avoid text messaging
charges for our users, and to conserve battery energy. Push
notifications are a better solution to any low-power device
which must make constant contact to a server for data up-
dates. Rather than requiring each application developer to
implement a background task to keep a separate connection
to their server to poll for updates, push notifications are an
OS-provided unified update service in which the OS main-
tains one connection to its own notification service. Then,
each developer can register their application with the OS
push service, and the OS only needs to maintain one connec-
tion to check for updates across several applications which
the user may have installed, preserving battery energy.

Our Android implementation uses the Android Cloud to
Device Messaging10 framework (C2DM) for push notifica-
tions, and our iOS implementation uses the Apple Push No-
tification Service (APNS).11 Since APNS is not available to
use directly from Google App Engine, we use an intermedi-
ary service, Urban Airship (UA)12 to bridge this gap.

7.2.2 Messaging Server Construction

We must work within the size limitations of these push
messages. C2DM push messages cannot exceed 1024 bytes,
while APNS messages may not exceed 256 bytes. This may
not allow a OpenPGP formatted text message to fit, so we
create a 160 bit random nonce to act as a message UUID or
retrieval token for each message the user sends.

When a user wants to send a message, we pass to our
server: a message retrieval token; the push token and no-
tification type (C2DM or UA/APNS) of the recipient; an
OpenPGP message containing text; identity, and file preview
data; and optionally another OpenPGP message (up to 10
MB) containing the file itself. The two OpenPGP messages
are stored in the server datastore for 24 hours before auto-

10http://code.google.com/android/c2dm
11http://support.apple.com/kb/HT3576
12http://urbanairship.com/docs

matic deletion, and we construct and send a push message
to the notification service type specified containing just the
message retrieval token. When the recipient’s OS push ser-
vice collects the push message, it will launch SafeSlinger to
read the message, and then SafeSlinger will notify the user
that a message is available for download.

7.2.3 Secure Text Messages

The text message itself, along with user name or verifi-
cation, timestamp, and preview data of any attachments are
formatted as an OpenPGP message. After the recipient re-
ceives the push message, they can download the text mes-
sage, decrypt and verify it.

7.2.4 Secure File Transfer

Similar to our Secure Messaging application, we have im-
plemented SafeSlinger file transfer for the Android 2.1 OS
and leverage the key exchange to share public keys and en-
crypt files stored on our smartphones such as images and
music, or other large binary data. Our implementation al-
lows any file just under 2GB in size to be transmitted as an
OpenPGP message. The file formatted as a separate OpenPGP
message described prior, and downloaded with the same re-
trieval token as the text message token.

We make use of the Intents in Android OS to advertise
to other applications that SafeSlinger Messaging is available
for sending media files to other people. In this way, users
viewing a photo in their photo gallery application can se-
lect “share” from the menu and receive a list of applications
which includes SafeSlinger to transmit the photo to another
user. We have enabled images, video, audio, vCards, text,
and other application files to use SafeSlinger for transmis-
sion to other users.

7.3 Secure Introduction
Based on the secure file transfer mechanism we have im-

plemented, we can support secure introductions, where a
common friend of two users sends contact data that includes
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public keys to each other. More concretely, consider Alice
with two friends: Bob and Carol. Alice has performed a
SafeSlinger exchange with both Bob and Carol and has thus
received an authentic SafeSlinger public keys for both Bob
and Carol, vice-versa, both Bob and Carol have Alice’s au-
thentic SafeSlinger public key. In a secure introduction, Al-
ice first encodes Bob’s contact information (which includes
Bob’s SafeSlinger public key and Push token) as a custom
vCard and uses an OpenPGP message format to protect se-
crecy and authenticity. Alice then sends this message via a
SafeSlinger transfer to Bob. Hence, Bob can validate that the
information indeed originates from Alice, whom he trusts
not to send bogus information. Analogously, Carols trusts
Bob’s information received from Alice. Now that Bob and
Carol have each other’s public keys and push tokens, they
can use SafeSlinger to securely communicate.

8. EVALUATION
We evaluated SafeSlinger on 2 to 5 devices. Our pop-

ulation includes 2 Motorola Droid devices under Android
2.2.3 OS and 3 Google Nexus S devices under Android 2.3.6
OS. Our devices were using a mixture of cellular messages
through 3G, and Wi-Fi messages through Carnegie Mellon’s
campus wireless access points.

Our measurements include 5 phases of the SafeSlinger
protocol between the sending the user’s initial commitment
(S4) and receiving the final decryption key (S17) as detailed
in Figure 3. We include 3 phases in which client and server
communicate:ID Assignment, Data Verification, and Match
Verification, and 2 phases where users must select matching
values:Low ID Selection and Phrase Selection(Figure 8).

• ID Assignmentincludes communication time to sub-
mit the user’s initial commitment and for the server to
assign and return an unique grouping ID (S4–S5).
• Low ID Selectionincludes the user’s time to compare

and enter the lowest grouping ID (S5–S8).
• Data Verificationincludes communication time between

client and server to collect all other user’s initial com-
mitments under the chosen grouping ID, and to dis-
tribute and verify the decommitments (S8–S10).
• Phrase Selectionincludes the user’s time to compare

and select the 3-word phrase that matches with other
user’s (S10–S14).
• Match Verificationincludes communication time be-

tween client and server to distribute and verify all “match”
or “no match” multi-value commitments, calculate the
shared secret key, distribute intermediate group DH
tree nodes (in case of groups with more than 2 users),
and to and to distribute and verify the encrypted match
nonce (S14–S17).

Except for the calculation of the shared secret key, these
measurements do not include the time to generate nonces or
symmetric keys, or to encrypt or decrypt the user’s vCard
data, which is negligible compared to the other overheads.

Figure 8: Time consumed during a SafeSlinger ex-
change.

Our results (Table 1) indicate that the total run time for 2
users is a comfortable average of 17 seconds to complete the
exchange. The total time is close to 35 and 40 seconds for 4
and 5 devices, respectively.

The increased time for larger numbers of participants is
mainly due to the additional bandwidth required for the ad-
ditional information, as well as the additional processing, es-
pecially for the STR group Diffie-Hellman protocol requir-
ing expensive modular exponentiations. As we can see from
the table, the execution time is efficient and usable.

9. RELATED WORK
Closely related research by Asokan-Ginzboorg [2], Ab-

dalla et al. [1], Valkonen et al. [39], and Laur and Pasini [20]
provide techniques for secure local establishment of a shared
secret key without relying on PKIs or any prior trusted infor-
mation. Unfortunately, a secret shared among nodes cannot
be used to provide integrity and authenticity for exchanged
messages, because any malicious group member with the
key could have created that message. Therefore, a shared
secret is insufficient for secure exchange of authentic infor-
mation. In particular, GitM attacks are possible, exploiting
the absence of message authenticity.

The most closely related works provide secure group-based
exchange of contact information: GAnGS [8], SPATE [22,
23], Ho-Po Key [30], and Nithyanand et al. [32].

The GAnGS protocol [8] was designed to scale trust es-
tablishment to a larger number of users – it supports large
groups of 25 or more users. Unfortunately, GAnGS requires
users to perform many operations and is thus cumbersome
to use. SPATE [22, 23] was designed for contact exchange
in smaller groups (8 or fewer people). SafeSlinger offers nu-
merous improvements over these prior systems: (1) GAnGS
and SPATE required the acquisition of a 2D barcode dis-
played by another phone, which can require a significant
amount of time especially in difficult lighting conditions such
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Table 1: Average execution time per number of devices (unit: second), averaged over 5 runs with standard deviation in
parenthesis
# of Devices ID Assignment Low ID Selection Data Verification Phrase Selection Match Verification Total

2 0.31 (0.24) 3.20 (0.99) 3.77 (0.18) 6.64 (1.66) 2.66 (0.23) 16.58 (2.39)
3 1.00 (0.61) 3.53 (1.17) 5.78 (1.07) 6.36 (1.66) 5.95 (1.69) 22.62 (3.84)
4 3.27 (1.62) 2.76 (0.90) 7.81 (1.05) 7.37 (3.73) 12.41 (2.89) 33.62 (6.01)
5 3.82 (0.64) 4.55 (1.06) 9.27 (0.82) 3.87 (0.38) 16.29 (1.61) 37.84 (1.08)

as bright sunshine; (2) GAnGS and SPATE use a visual hash
function for users to perform comparison of the hash values
– such a visual hash cannot support remote execution and
enables users to simply click “match” without actually per-
forming the comparison; (3) GAnGS and SPATE enable by-
standers to learn everyone’s contact information, potentially
disclosing sensitive private information. We believe thatthe
improvements that SafeSlinger offers are significant enough
that it is now ready for wide-spread adoption. In particular,
the privacy protection achieved with the group DH protocol
is critical for people who want to protect their privacy. Ho-
Po Key [30] key establishment is useful for large groups,
requiring people to form a physical ring in space to avoid
counting while detecting Sybil and other attacks. SafeSlin-
ger uses Ho-Po Keys when users indicate a large group size.

Nithyanand et al. recently studied the usability of secure
group association protocols [32]. Their results with real user
studies concludes that the ideal group credential exchange
protocol does not use a leader (i.e., is peer-based), requires
users to count and input the number of participants, and re-
quires users to verify Short Authentication Strings (SAS).
Hence, their study confirms the approaches we have selected
for SafeSlinger.

PGP key-signing parties [4] enable users to obtain each
other’s public key, but they are cumbersome for participants.
SafeSlinger can be viewed as a more modern and usable ap-
proach using smartphones to securely exchange public keys.

Many researchers have studied device pairing or key setup
between two devices [3, 5–7, 12, 13, 21, 24–26, 28, 35, 38].
These systems, however, do not easily generalize to multiple
parties, as they would encounter the issues we describe in
Section 4.

10. LIMITATIONS AND RESEARCH CHAL-
LENGES

The main limitations of the current SafeSlinger applica-
tion are: (1) its reliance on users to diligently perform the
world-list comparisons, thereby ensuring thatall usershave
the same hash value, and (2) its requirement that users check
the received contact list entries before finally importing them
into their address book. Although SafeSlinger is more usable
and secure than all prior work that we are aware of, it is an
open research problem to determine whether the reliance on
the user can be further reduced without requiring additional
trust assumptions on other users. Another research challenge
is a formal verification of the protocol that includes user ac-

tions, which may help in exploring optimizations that limit
reliance on the user.

11. CONCLUSION
To realize the vision of secure online communication, we

need to overcome several human challenges: some users are
ambivalent about security or privacy, most users lack secu-
rity expertise, and many users prefer convenience over secu-
rity and may not want to expend much effort for security.

To counteract these challenges, we designed SafeSlinger
as an easy-to-use application that offers many benefits to
drive usage. Per Metcalfe’s law, the utility of a system grows
with the square of the number of users. Our goal is thus to
provide immediate utility to enable epidemic growth.

We achieve immediate utility through the robust exchange
of contact list information between different smartphone plat-
forms, which does not require any location information or
leak private information outside the participating phones.
SafeSlinger also provides simple and secure messaging and
file transfer that is immediately usable. Because the mes-
sages are encrypted and require a password to access, many
teens may find this appealing to protect their messages from
peers and parents.

To seed epidemic growth, SafeSlinger supports secure re-
mote exchange of contact list information and secure intro-
ductions, where a common friend can securely sling respec-
tive contact list information between two users, setting upa
secure channel between them.

Through free multi-platform applications available on smart-
phone markets,13 open documentation, and open-source code,
we anticipate wide adoption of SafeSlinger. Assuming wide
adoption, we hope to provide usable and secure communica-
tion for the masses, and a security platform that will enable
numerous security services and applications.
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